Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 267: 116228, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38354521

RESUMO

In quest for new photosensitizers (PSs) with remarkable antitumor photodynamic efficacy, a series of fifteen quaternary ammonium (QA) cations conjugated 5,15-diaryltetranaphtho[2,3]porphyrins (Ar2TNPs) was synthesized and evaluated in vitro and in vivo to understand how variations in the length of the alkoxy group and the kind of QA cations on meso-phenyl influence the photodynamic antitumor activity. All final compounds (I1-5, II1-5, and III1-5) exhibited robust absorption at 729 nm with significant bathochromic shift and high molar extinction coefficients (1.16 × 105-1.41 × 105 M-1 cm-1), as well as other absorptions at 445, 475, 651, and 714 nm for tumors and other diseases of diverse sizes and depths. Upon exposure to 474 nm light, they displayed intense fluorescence emission with fluorescence quantum yields ranging from 0.32 to 0.43. The ability to generate reactive oxygen species (ROS) was also quantified, attaining a maximum rate of up to 0.0961 s-1. The IC50 values of all the compounds regarding phototoxicity and dark toxicity were determined using KYSE-150 cells, and the phototoxicity indices were calculated. Among these compounds, III1 demonstrated the highest phototoxic index with minimal dark toxicity, and suppressed successfully the growth of esophageal carcinoma xenograft with favorable tolerance in vivo. Furthermore, the histological results showed III1-mediated PDT had a significant cytotoxic effect on the tumor. These outcomes underscore the potential of III1 as a highly effective antitumor photosensitizer drug in photodynamic therapy (PDT).


Assuntos
Compostos de Amônio , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Porfirinas/farmacologia , Cátions
2.
Bioorg Chem ; 143: 107097, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190797

RESUMO

To discover new photosensitizers with long wavelength UV-visible absorption, high efficiency, and low side effects for photodynamic therapy, here, a series of novel thieno[3,2-b]thiophene-fused BODIPY derivatives were designed, synthesized and characterized. These compounds had a distinct absorption band at 640-680 nm, fluorescence emission at 650-760 nm, and good solubility with anti-aggregation effects. These new compounds possessed obvious singlet oxygen generation ability and photodynamic anti-Eca-109 cancer cells activities in vitro. Among them, compound II4 could be well uptaked by Eca-109 cells, and result in the apoptosis after laser irradiation, and have outstanding photodynamic efficiency both in vitro and in vivo. Therefore, II4 could be considered as a potential photosensitizer drug candidate for PDT and photo-imaging.


Assuntos
Compostos de Boro , Fotoquimioterapia , Fotoquimioterapia/métodos , Solubilidade , Tiofenos/farmacologia , Fármacos Fotossensibilizantes/farmacologia
3.
Eur J Med Chem ; 264: 115980, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38039789

RESUMO

In the pursuit of new potent photosensitizers (PSs) for photodynamic therapy (PDT) with better efficacy, a series of 5,15-diaryltetranaphtho [2,3]porphyrins (Ar2TNPs) with two or four carboxyalkoxy groups were designed, synthesized, and evaluated. These new compounds exhibited strong, broad and red-shifted UV-vis absorptions at 729 nm and other strong absorptions at 446, 475, 650, 659, 714 nm for tumors and other diseases of varying sizes and depths. They possess high molar extinction coefficients (0.95 × 105-1.48 × 105 M-1 cm-1), good singlet oxygen quantum yields and photodynamic antitumor effects towards Eca-109 cells in vitro. It is suggested that the extension of porphyrin with naphthalene into Ar2TNP results into remarkable improvement of photophysical characteristics, while the introduction of carboxyalkoxy groups on meso-phenyl can significantly improve the solubility and photodynamic effects in vitro and in vivo. Notably, compound II3 can localize primarily in lysosomes of Eca-109 cells and induce substantial cell apoptosis after PDT. It can also selectively accumulate in tumor tissues and be traced real-timely through in vivo fluorescence imaging with distinctive inhibition of tumor growth. Therefore, compound II3 deserves to be considered as a promising PDT drug candidate for individualized tumor real-time tracing and treatment.


Assuntos
Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Porfirinas/farmacologia , Apoptose
4.
Nanomedicine (Lond) ; 19(2): 127-143, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38131290

RESUMO

Background: Photodynamic therapy (PDT) of cancer has been limited by the poor solubility of most photosensitizers, use of high drug dosages, and the pH difference between the tumor tissue microenvironment (slightly acidic) and the bloodstream. These affect cellular uptake, selectivity and singlet oxygen generation. Materials & methods: We formulated Photinia glabra-green synthesized zinc oxide-protoporphyrin IX (PG-ZnO-PP) nanoconjugates by conjugating the ZnO nanoparticles enriched with amino groups and PP. Results: PG-ZnO-PP nanoconjugates showed higher rate of reactive oxygen species generation, improved cellular uptake in the acidic pH and lower IC50 toward Eca-109 cells for PDT. Conclusion: PG-ZnO-PP nanoconjugates are a potential solution to reducing drug dosage of PP through improved drug uptake, for enhanced targetability and reduced skin photosensitivity with improved PDT efficacy.


The progress of treating cancer using light-sensitive drugs and laser light of known wavelength has been limited by the poor solubility of most light-sensitive drugs, the use of high drug dosages and the slightly acidic environment within the cancerous tissues compared with normal blood in the body. These affect the ability of drugs to accumulate in cancerous cells, and not the normal cells, and the ability to produce the oxygen species that are toxic to the cancerous cells. In this paper, we prepared nanoparticles from zinc acetate using Photinia glabra (PG) fruit extract which were then used to chemically react with a light-sensitive drug called protoporphyrin IX (PP) to formulate small particles known as PG­zinc oxide (ZnO)­PP nanoconjugates. Our results showed that PG­ZnO­PP nanoconjugates had the ability to produce the toxic oxygen particles at a high rate and in good quantity. They also had a higher capability to accumulate in the cancerous cells at a pH below 7 with lower values of the drug needed to cause 50% of cell death toward the cancerous cells which affect the tube that connects from the throat to the stomach when projected with laser light. We could consider PG­ZnO­PP nanoconjugates to serve as a potential solution for reducing the dosage of PP needed to treat cancer in the presence of laser light, and at the same time they can help to reduce the skin-related side effects for patients after treatment when exposed to light.


Assuntos
Neoplasias , Photinia , Fotoquimioterapia , Protoporfirinas , Óxido de Zinco , Nanoconjugados , Óxidos , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Neoplasias/tratamento farmacológico
5.
Nanomedicine (Lond) ; 18(14): 987-1002, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37584549

RESUMO

Aims: We prepared Photinia glabra (PG) aqueous fruit extract, utilized it to synthesize silver nanoparticles (PG-Ag NPs) and evaluated the antibacterial and anticancer activities of the nanoparticles (NPs). Materials & methods: Silver nitrate aqueous solution was reduced to PG-Ag NPs using aqueous PG fruit extract. NP shape, size, composition and functionalization were determined using transmission electron microscopy, x-ray photoelectron spectroscopy, Fourier transform infrared and x-ray diffraction. Results & conclusions: PG-Ag NPs were spherical, approximately 39-77 nm-sized, functionalized surfaces with notable antibacterial activity against both Escherichia coli and Staphylococcus aureus, with an MIC <30 ug/ml and cytotoxicity toward esophageal cancer cells, with IC50 values less than 20 ug/ml. PG-Ag@rt NPs have been shown to be a potent antibacterial and anticancer agent, and their enriched particle surfaces can be conjugated with other compounds for multibiomedical applications.


The present study reports for the first time the preparation of Photinia glabra (PG) aqueous fruit extract and its use for the synthesis of smaller silver particles (PG-Ag NPs) from bulk aqueous silver nitrate solution (AgNO3). The preparation followed the reduction ability of PG fruit extract phytochemical under different preparation conditions: at room temperature (PG-Ag@rt), at 70°C (PG-Ag@70) and in the presence of cerium oxide at 70°C (PG-Ag+CeO2@70). The prepared smaller particles were found using transmission electron microscopy to be spherical in shape with sizes 39, 77 and 44 nm for PG-Ag@rt, PG-Ag@70 and PG-Ag+CeO2@70, respectively. The NPs contained different functional groups on their surfaces due to the capping ability of PG fruit extract components. Among all, PG-Ag@rt NPs showed strongest antibacterial activity against Escherichia coli and Staphylococcus aureus with MIC 7.0 µg/ml and 28.0 µg/ml, respectively, and commendable anticancer activity toward Eca-109 cancer cells with IC50 less than 20 ug/ml.


Assuntos
Antibacterianos , Antineoplásicos , Nanopartículas Metálicas , Prata , Antibacterianos/farmacologia , Frutas/química , Nanopartículas Metálicas/química , Photinia/química , Extratos Vegetais/química , Prata/farmacologia , Antineoplásicos/farmacologia
6.
Photochem Photobiol Sci ; 22(2): 427-439, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36344865

RESUMO

The synthesis of ideal photosensitizers (PSs) is considered to be the most significant bottleneck in photodynamic therapy (PDT). To discover novel PSs with excellent photodynamic anti-tumor activities, a series of novel photosensitizers 5,15-diaryl-10,20-dibromoporphyrins (I1-6) were synthesized by a facile method. Compared with hematoporphyrin monomethyl ether (HMME) as the representative porphyrin-based photosensitizers, it is found that not only the longest absorption wavelength of all compounds was red-shifted to therapeutic window (660 nm) of photodynamic therapy, but also the singlet oxygen quantum yields were significantly increased. Furthermore, all compounds exhibited lower dark toxicity (except I2) and stronger phototoxicity (except I4) against Eca-109 tumor cells than HMME. Among them, I3 possessed the highest singlet oxygen quantum yield (ΦΔ = 0.205), the lower dark toxicity and the strongest phototoxicity (IC50 = 3.5 µM) in vitro. The findings indicated the compounds I3 had the potential to become anti-tumor agents for PDT.


Assuntos
Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/química , Porfirinas/química , Neoplasias/tratamento farmacológico
7.
J Control Release ; 336: 207-232, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34102221

RESUMO

Cancer is currently a major threat to public health, being among the principal causes of death to the global population. With carcinogenesis mechanisms, cancer invasion, and metastasis remaining blurred, cancer diagnosis and novel drug delivery approaches should be developed urgently to enable management and treatment. A dream break-through would be a non-invasive instantaneous monitoring of cancer initiation and progression to fast-track diagnosis for timely specialist treatment decisions. These innovations would enhance the established treatment protocols, unlimited by evasive biological complexities during tumorigenesis. It is therefore contingent that emerging and future scientific technologies be equally biased towards such innovations by exploiting the apparent properties of new developments and materials especially nanomaterials. CNCs as nanomaterials have undisputable physical and excellent biological properties that enhanced their interest as biomedical materials. This article therefore highlights CNCs utility in cancer diagnosis and therapy. Their extraction, properties, modification, in-vivo/in-vitro medical applications, biocompatibility, challenges and future perspectives are precisely discussed.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Materiais Biocompatíveis , Celulose , Sistemas de Liberação de Medicamentos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
8.
Photochem Photobiol Sci ; 16(11): 1623-1630, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-28933502

RESUMO

Protoporphyrin IX (PpIX) is used as a photosensitizer in the photodynamic diagnosis (PDD) and photodynamic therapy (PDT) of cancer and is synthesized intracellularly from 5-aminolevulinic acid (5-ALA) precursors. Thirteen novel 5-ALA derivatives were designed and synthesized appropriately with tailored hydrophilicity and lipophilicity. The generation of PpIX was detected and their antitumor activity in vitro and in vivo was also investigated. It was shown that compounds 9b-c, 11b-c and 13a displayed a characteristic long wavelength absorption peak at 593 nm after 5 h incubation in mice fibrosarcoma S180 cells. After being exposed to 600 nm laser light irradiation, these compounds can inhibit cell proliferation in S180 cells in vitro. The growth of S180 cell tumors in Kunming mice was significantly inhibited by these compounds in vivo. Among these compounds, 13a has low dark toxicity and high phototoxicity, which makes it an effective and promising prodrug for PDT.


Assuntos
Ácido Aminolevulínico/farmacologia , Antineoplásicos/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Pró-Fármacos/farmacologia , Protoporfirinas/farmacologia , Ácido Aminolevulínico/síntese química , Ácido Aminolevulínico/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Protoporfirinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...